

Mark Scheme (Results)

January 2014

IAL Chemistry (WCH06/01)
Unit 6: Chemistry Laboratory Skills II

PEARSON

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Correct Answer	Reject	Mark
1(a)	Any two from: Fe ²⁺ / Fe(H ₂ O) ₆ ²⁺ Ni ²⁺ / Ni(H ₂ O) ₆ ²⁺ Cr ³⁺ / Cr(H ₂ O) ₆ ³⁺	Cr ²⁺	
	Allow Cu ²⁺	Cu(H ₂ O) ₆ ²⁺ Cu(H ₂ O) ₄ ²⁺	
	Ignore names		
	As usual: 1 correct and 1 incorrect scores 1 2 correct and 1 incorrect scores 1 3 correct and 1 incorrect scores 2		2

Question Number	Correct Answer	Reject	Mark
1(b)(i)	Fe ²⁺ / Fe(H ₂ O) ₆ ²⁺		
	Ignore names		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Fe(OH) ₂ / Fe(H ₂ O) ₄ (OH) ₂ / Fe(OH) ₂ (H ₂ O) ₄		
	Ignore names		
	TE if Ni^{2+} in (b)(i) then $Ni(OH)_2/Ni(H_2O)_4(OH)_2/Ni(OH)_2(H_2O)_4$ score 1.		
	No TE for Cr ³⁺		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	Fe(OH) ₃ / Fe(H ₂ O) ₃ (OH) ₃ / Fe(OH) ₃ (H ₂ O) ₃		
	Ignore names		
	No TE from (b)(i)		
	ALLOW: Fe ₂ O ₃ with or without water		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(iv)	Oxidation / redox (reaction) Additional information may be given and can be ignored, e.g. 'green precipitate undergoes oxidation'. ALLOW:	Just 'reduction'	
	Oxidation and reduction		1

Question Number	Acceptable Answers	Reject	Mark
1(c)	Purple to colourless/pale yellow/brown	Colourless to purple	
	Both required		
	OR		
	Purple (solution) decolourised		
	Allow		
	Pink for purple		
	OR		
	Green to yellow/brown	Green to purple	1

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	Cl ⁻ (ion)	CI FeCl ₂	
	Ignore names: e.g. Chlor ide (ion) Iron(II) chloride	Chlor ine ion	1

Question	Acceptable Answers	Reject	Mark
Number	Acceptable Allsweis	Reject	IVIAIR
1(d)(ii)	Ammonia reacts with the iron ions to form a precipitate OR		
	A precipitate forms (1)		
	Second mark		
	(A precipitate of) Iron(II) hydroxide/ Iron(III) hydroxide/ Fe(OH) ₂ / Fe(H ₂ O) ₄ (OH) ₂ / Fe(OH) ₃ / Fe(H ₂ O) ₃ (OH) ₃ (forms)		
	OR		
	Obscures the dissolving of the white precipitate (OWTTE e.g. masks precipitate) (1)		
	ALLOW Precipitate should dissolve but here ammonia is neutralised by nitric acid (1 max)		2

(Total for Question 1 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	$CuCl_4^{2-}/[CuCl_4]^{2-}/(CuCl_4)^{2-}/[Cu(Cl)_4]^{2-}$	CuCl ₄	
		Correct formula with added H ₂ 0	1

Question Number	Acceptable Answers	Reject	Mark
2(b)	(pale) blue precipitate (1) Ignore gelatinous in front of precipitate but not in front of solution in next part. precipitate dissolves (in excess ammonia)/ precipitate disappears/soluble/solution		
	forms (1)		
	deep/dark(er)/royal blue(solution) (1)	Just "blue"	
	deep blue solution forms scores 2 nd and 3 rd marks		
	Marks stand alone		
	Ignore formulae even if incorrect		3

Question	Acceptable Answers	Reject	Mark
Number			
2(c)(i)	$(2S_2O_3^{2-} + I_2 \rightarrow) S_4O_6^{2-} + 2I^{-}$		
			ļ
	Ignore state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	$mol S_2O_3^{2-} = 17.85 \times 0.120/1000 $ (1)		
	$= 2.142 \times 10^{-3}/0.002142$		
	mol Cu ²⁺ = $2.142 \times 10^{-3} \text{ in } 25 \text{ cm}^3$		
	total mol Cu ²⁺ = $2.142 \times 10^{-3} \times 250/25$ (1)	1 sf	
	$= 2.142 \times 10^{-2}/0.02142$		
	$[CuSO_4] = 2.142 \times 10^{-2} \times 1000/20.0$		
	= 1.07(1) (mol dm ⁻³) (1)	1.0/1	
	Ignore sf except 1 sf		
	Correct answer with no working (3)		
	0.107 (mol dm ⁻³) 2 max		
	Check unfinished calculation not finished on next page		
	2 nd and 3 rd marks can be transferred errors		3

(Total for Question 2 = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)	To quench/stop/slow the reaction		
	ALLOW freeze		
	IGNORE:		
	to reduce reactivity		
	exothermic reaction/reaction gives our heat		1

Question Number	Acceptable Answers	Reject	Mark
3(b)	Phenolphthalein and one of the following: (Indicator) range /colour change corresponds to steep change in pH.		
	OR		
	(Indicator) range /colour change corresponds to vertical/steep region of pH titration curve		
	OR		
	(change in) pH range 7.1 - 12/ above 7		
	OR		
	(change in) pH range of methyl orange is below 7/ range 6.9 - 3		
	OR	strong acid –	
	pK _{in} is greater than 7, or any number greater than 7 and less than 14. (correct value is 9.3)	strong base titration	
	OR		
	changes colour at/near equivalence point		
	OR		
	carboxylic acid is a weak acid		
	OR weak acid – strong base titration		1

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	Catalyst/hydrochloric acid/HCl reacts with the sodium hydroxide ALLOW Acid in (initial) solution		1

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	(More) (carboxylic) acid is formed	More product is formed	1

Acceptable Answers	Reject	Mark
20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 0 1 2 3 4 5 6 7 8 9 10111213141516 Time/min	5	
Axes labelled with quantity and units Note unit for time must be min not s (1)	
Points correctly plotted using at least half the graph paper in both dimensions		
Allow one mis-plot provided curve is smooth to half lives found in range 7.2 - 7.8 (mins) Ignore seconds for units	oth	
(half lives need not be successive) (1)	
values in third mark) (1 Note:)	4
	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 0 1 2 3 4 5 6 7 8 9 10111213141510 Time/min Axes labelled with quantity and units Note unit for time must be min not s (1 Points correctly plotted using at least half the graph paper in both dimensions Smooth curve through points (1 Allow one mis-plot provided curve is smooth in range 7.2 - 7.8 (mins) Ignore seconds for units (half lives need not be successive) (1 First order (this mark depends on two clovalues in third mark) (1) Note:	20.0 18.0 18.0 19.0 10.0 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 1

Question Number	Acceptable Answers	Reject	Mark
3(e)	Orange to green/blue/brown Both colours required IGNORE: Qualifications of colour, e.g. dark green	Combinations of blue and green	1

Questio n Number	Acceptable Answers		Reject	Mark
3(f)(i)	e.g. sodium hydrogeno sodium bicarbonate)	arbonate (allow	Indicators sodium hydroxide	
	Reagent (1) Na ₂ CO ₃ (aq)/NaHCO ₃ (aq)/CaCO ₃ ((s)) Allow solid Na ₂ CO ₃ /NaHCO ₃	Observation (1) Effervescence/ fizzing Allow: Testing gas with limewater which turns cloudy; Neutralises large volume	NaCO ₃ Loses reagent mark LiALH ₄	
	PCI ₅ Alcohol (+ mineral acid)	Misty/steamy/white fumes Fruity smell	White smoke Just ester formed	
	Na / Mg	Effervescence/ fizzing		2

Question Number	Acceptable Answers		Reject	Mark
3(f)(ii)	red/orange/yellow precipitate Or Iodine and sodium hydroxide ((1) (1) (1) (1)	Colour only Colour only	2

Ignore references to Tollens, Bendict's,	
Fehling's and result (ie no TE)	

Question Number	Acceptable Answers	Reject	Mark
3(g)	Primary		
	ALLOW:		
	1°		
	OR		1
	-CH ₂ OH		
	IGNORE: Names		

Question	Acceptable Answers	Reject	Mark
Number			
3(h)(i)	4 different H/hydrogen/proton environments	4 different kinds of H	
		4 different environments	1

Question Number	Acceptable Answers	Reject	Mark
	accept –OH/CH ₃ ALLOW correct skeletal formula correct structural formula e.g. CH ₃ CH(CH ₃)CH ₂ OH OR Part structural, part displayed formula	Molecular formula OHC/O-H-C where there are clearly two bonds to hydrogen	1
	OR		

Vertical bond to OH wherever it finishes		
--	--	--

Question Number	Acceptable Answers	Reject	Mark
3(h)(iii)	H on the OH group	O alone	
	OR	СОН	
	OH group		1
	ALLOW TE for OH/H on wrong isomer		

(Total for Question 3 = 17 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)	Hazard: flammable Precaution: keep away from naked flames/ use electrical heating/mantle or use water bath (1)	Keep away from sources of heat	
	Hazard: corrosive Precaution: wear gloves (1)	Avoid direct heat	
	Precaution must relate to appropriate hazard		
	2 correct hazards with no precautions (0)		2
	Use of fume cupboard		

Question Number	Acceptable Answers	Reject	Mark
4(b)	Round-bottom/pear shape flask with vertical reflux condenser, drawn or labelled (1)	Conical flask	
	Condenser jacket drawn at with water in at bottom, out at top (1) Heating source e.g. heating mantle/electric heater/water bath/ oil bath (1) ALLOW Water/oil bath heated by Bunsen burner	Bunsen burner Arrow (labelled or unlabelled) Closed apparatus/ large air gaps in wrong places loses an additional mark	
	Fully correct distillation apparatus (1 max) If both reflux and distillation diagrams drawn, then 2 marks max		3

Question Number	Acceptable Answers	Reject	Mark
4(c)	Prevents superheating/ localised heating ALLOW: Violent boiling OR Promotes smooth/even/uniform boiling OR	Just "stops bumping" Just: Violent reaction Just: Prevent explosion Just: Prevent mixture rising up condenser	
	Promotes smooth/even/uniform heating IGNORE prevents vigorous reactions/(large)bubbles/splashing		1

Question Number	Acceptable Answers	Reject	Mark
4(d)	To remove/react with/neutralize the (unreacted) (ethanoic) acid		1

Question Number	Acceptable Answers	Reject	Mark
4(e)	Anhydrous sodium sulfate (1) Others would react with/decompose product/ester Sodium sulfate does not react with/decompose product/ester (1)	Others "too strong" Easiest to separate The only neutral one	
	Second mark depends on first		2

Question Number	Acceptable Answers	Reject	Mark
4(f)	Start 139-141°C End 143-145°C Both required for the mark	Single temperature	1

Question Number	Acceptable Answers	Reject	Mark
4(g)(i)	Mass 3-methylbutan-1-ol = 0.81 x 10.0		
	(1) = 8.10(g)		
	Mol 3-methylbutan-1-ol = 8.10/88.0 = 0.09204545		
	MoI product $= 0.09205$	0.09/0.0921	
	(0.0920 and 0.092 are both allowed for this step)		
	(1)		
	Mass of product = 0.09205×130.0 = 12.0 (g) to 3 sf (1)		
	Correct answer with no working 3 marks (3)		
	With consequential marks, the last mark is lost if the candidate's data is not rounded correctly to 3 sf.		
	0.09 gives 11.7 (2 max)		3
	0.092 gives 12.0 (3)		

Question	Acceptable Answers		Reject	Mark
Number 4(g)(ii)	EITHER			
	% yield = 9.45/(ans to 4(g)(i)) x 100	1) 1)		
	N.B. correct value: % yield = 9.45/12.0 x 100 = 78.75% = 79%			
	OR			
	$\frac{9.45}{130} = 0.07269 \text{ (mol)}$	(1)		
	<u>0.07269</u> x 100 0.09205			
	= 78.9680% = 79%	(1)		
	Accept any answer that rounds to 79 to tw	vo sf		
	Allow TE from (i) for full credit unless greathan 100% in which case (iter 1max)		2

(Total for Question 4 = 15 marks)